B.A/B.Sc. 1st Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMHCC02 (Algebra)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answ	er any six questions: $6 \times 5 = 30$	
(a)		Solve the equation $x+y+z=2, x^2+y^2+z^2=22, x^3+y^3+z^3=8$.	[5]
(b)		If a, b, c are all positive real numbers and $a+b+c=1$ prove that	[5]
		$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \ge \frac{9}{2}$	
(c)	(i)	What is the remainder when $6.7^{32} + 7.9^{45}$ is divided by 4?	[3]
	(ii)	If $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, prove that $n + S_n > n (n+1)^{1/n}$, if $n > 1$.	[2]
(d)		Find the standard matrix A for the transformation $T(X)=3X$ for all X in \mathbb{R}^2 .	[5]
(e)		Prove that any integer of the form $6k+5$ is also of the form $3r-1$ for some r in \mathbb{Z}	[5]
		but not conversely.	
(f)		If α, β, γ be the roots of the equation $x^3 + qx + r = 0$ ($r \neq 0$), find the	[5]
		equation whose roots are $\frac{\beta}{\gamma} + \frac{\gamma}{\beta}$, $\frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.	
(g)		Suppose A is 2×2 real matrix with trace 5 and determinant 6. Find the	[5]
		eigenvalues of the matrix B, where $B = A^2 - 2A + I$	
(h)		Let us consider the function $f: \mathbb{R} \to (-1,1)$ given by $f(x) = \frac{x}{1+ x }$ for all x in	[5]
		\mathbb{R} . Show that f is a bijective function and find f^{-1} .	
2.	Answe	er any three questions: $10 \times 3 = 30$	
(a)	(i)	State Caley-Hamilton theorem. Use this theorem to find A^{100} , where.	[1+4]
		$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	
	(ii)	Show that the product of all values of $(1 + \sqrt{3} i)^{3/4}$ is 8.	[5]
(b)	(i)	Prove that any non-empty open interval in real line is uncountable.	[5]
	(ii)	If x , y , z are positive rational numbers, prove that	[5]
		$\left(\frac{x^2+y^2+z^2}{x+y+z}\right)^{x+y+z} \ge x^x y^y z^z \ge \left(\frac{x+y+z}{3}\right)^{x+y+z}.$	

(c) (i) Let V be the set of all points (x, y) in the xy plane. Define a relation R given [2+2+1] by (x,y) R (a,b) if and only if $x^2+y^2=a^2+b^2$. Show that R is an equivalence

relation on V. Determine the equivalence classes of R? Determine the equivalence class containing the point (2,3).

- (ii) Show that there does not exist any natural number *n* so that dimension of the [5] subspace of $M_{n \times n}$, consisting of $n \times n$ matrices whose sum of elements in each row and diagonals are equal to 0, is $n^2 + n$.
- (d) (i) Determine *h* and *k* so that the solution set of system of equations $x_1 + y_1 = [5]$ *k* and $4x_1 + hy_1 = 5$.
 - a) is empty
 - b) is a singleton
 - c) is infinite.
 - (ii) Show that there does not exist any surjective map from an arbitrary set X [5] onto P(X), where P(X) denotes the powerset of X.
- (e) (i) Use Sturm's theorem to show that the roots of the following equation are all [5] real and distinct: $x^4 + 4x^3 x^2 10x + 3 = 0$.
 - (ii) If z is a non-zero complex number and m, n are positive integers prime to [5] each other, then show that $(z^{1/n})^m = (z^m)^{1/n}$.